(ТЭП)
термоэлектронный
преобразователь энергии, термоионный
преобразователь энергии, устройство для непосредственного преобразования тепловой
энергии в электрическую на основе явления термоэлектронной эмиссии (См.
Термоэлектронная эмиссия)
. Простейший ТЭП состоит из двух электродов (катода, или эмиттера, и анода, или коллектора, изготовляемых из тугоплавких металлов, обычно Mo, Re, W), разделённых вакуумным промежутком (
рис. 1). К эмиттеру от источника тепла подводится тепловая энергия, достаточная для возникновения заметной термоэлектронной эмиссии с поверхности металла. Электроны, преодолевая межэлектродное пространство (несколько десятых долей
мм)
, попадают на поверхность коллектора, создавая на нём избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Если непрерывно обеспечивать подвод тепла к эмиттеру и соответствующее охлаждение коллектора (который получает тепло от достигающих его электронов), то во внешней цепи будет поддерживаться электрический ток и таким образом совершаться работа. Так как ТЭП представляет собой по существу тепловую машину, рабочим телом которой служит "электронный газ" (электроны "испаряются" с эмиттера - нагревателя и "конденсируются" на коллекторе - холодильнике), то кпд ТЭП не может превосходить кпд
Карно цикла
.
Напряжение, развиваемое ТЭП (0,5- 1
в)
, - порядка контактной разности потенциалов (См.
Контактная разность потенциалов)
, но меньше её на величину падения напряжения на межэлектродном зазоре и потерь напряжения на коммутационных проводах (
рис. 2). Максимальная плотность тока, генерируемого ТЭП, ограничена эмиссионной способностью эмиттера и может достигать нескольких десятков
а 1
см2 поверхности. Для получения оптимальных величин работы выхода (См.
Работа выхода) эмиттера (2,5-2,8
эв) и коллектора (1,0-1,7
эв) и для компенсации объёмного заряда электронов, образующегося вблизи электродов, в зазор между ними обычно вводят легко ионизируемые пары Cs. Положительные ионы цезия образуются при столкновении атомов Cs с быстрыми и тепловыми электронами как на горячем катоде
(Поверхностная ионизация)
, так и в межэлектродном объёме (вследствие либо однократного соударения атомов Cs с быстрыми и тепловыми электронами, либо ступенчатой ионизации, при которой в результате 1-го соударения с электроном атом Cs переходит в возбуждённое состояние, а при последующих - ионизируется). В последнем случае ТЭП работает в так называемое дуговом режиме - наиболее употребительном. При используемых в современных ТЭП температурах электродов (1700-2000 К на катоде и 800-1100 К на аноде) их удельная мощность (в расчёте на 1
см2 поверхности катода) достигает десятков
вт, а кпд может превышать 20\%.
По роду источника тепла различают ядерные (реакторные и радиоизотопные), солнечные и газопламенные ТЭП. В ядерных ТЭП используется тепло, выделяющееся в результате реакции ядерного деления (в реакторных ТЭП) или распада радиоактивного изотопа (в радиоизотопных). В 1970 в СССР создан первый в мире
термоэмиссионный преобразователь-реактор "Топаз" электрической мощностью около 10
квт. В солнечных ТЭП нагрев эмиттера осуществляется за счёт тепловой
энергии солнечного излучения (с применением
Гелиоконцентраторов)
. Газопламенные ТЭП работают на тепле, выделяющемся при сжигании органического топлива.
Важные преимущества ТЭП по сравнению с традиционными электромашинными преобразователями - отсутствие в них движущихся частей, компактность, высокая надёжность, возможность эксплуатации без систематического обслуживания. В настоящее время (середина 70-х гг.) достигнут ресурс непрерывной работы одиночного ТЭП свыше 40000 ч. Перспективно использование ТЭП в качестве высокотемпературного звена многоступенчатых преобразователей энергии, например, в сочетании с термоэлектрическими преобразователями, работающими при более низких температурах. В СССР, США, Франции и ряде др. стран ведутся интенсивные работы по созданию ТЭП, пригодных для массового промышленного использования.
Лит.: Елисеев В. Б., Пятницкий А. П., Сергеев Д. И., Термоэмиссионные преобразователи энергии, М., 1970; Термоэмиссионные преобразователи и низкотемпературная плазма, М., 1973; Технология термоэмиссионных преобразователей. Справочник, под ред. С. В. Рябикова, М., 1974.
Н. С. Лидоренко.
Рис. 1. Схема термоэмиссионного преобразователя: К - катод, или эмиттер; А - анод, или коллектор; R - внешняя нагрузка; QК - тепло, подводимое к катоду; QА - тепло, отводимое от анода; 1 - атомы цезия; 2 - ионы цезия; 3 - электроны.
Рис. 2. Распределение потенциальной энергии электронов в межэлектродном зазоре при недостаточной концентрации ионов цезия (1), в условиях компенсации объёмного заряда (2) и в дуговом режиме (3): УФК и УФА - уровни Ферми катода (эмиттера) и анода (коллектора); E - энергия; EК и EА - работа выхода катода и анода; ΔV3, ΔVпр и V - падение напряжения соответственно на межэлектродном зазоре, на коммутационных приводах и во внешней цепи; е - заряд электрона; d - межэлектродное расстояние.